Binance Square

TheEndofrussia

Open Trade
Occasional Trader
1.1 Years
🔺#DUAAI🔺activeness.social #oprussia #SocialEngineering #expert #data analytics.twitter.com #psychomatrix #BinanceUkraine #russiaisaterroriststate #ITArmyUKR
178 Following
62 Followers
218 Liked
204 Shared
All Content
Portfolio
PINNED
--
PINNED
TheEndofrussia
--
D. E. A. L.
#DEAL #russia #USA European Parliament Office in Ireland #EUROPE #ukraine #economics #CRYPTO #CAPITAL #WAR As of December 2025, Russia and China have a strong economic partnership, with bilateral trade exceeding $200 #billion. China is Russia's top trading partner, providing an economic lifeline amid Western sanctions—Russia exports discounted energy (oil/gas make up ~75% of its sales to China), while importing goods and tech. However, trade dipped ~10% from 2024 peaks due to frictions like Russian import curbs on Chinese cars to protect local industries. While Russia is increasingly reliant, it's a mutual strategic tie, not full subordination. "Appendage" may overstate it, but dependency is evident.
23:55 2025 Нижче — приклад Python-коду, згенерованого на основі наданого тобою аналізу, який:
структурує ключові економічні твердження (торгівля РФ–КНР),
моделює залежність Росії від Китаю,
показує сценарний аналіз (що буде при падінні торгівлі),
будує просту візуалізацію.
Код аналітичний / ілюстративний, не прив’язаний до live-даних (бо ти вже дав узагальнений аналіз).
🔹 1. Структура даних + базові метрики залежності
Копіювати код
#python #DeAl
import pandas as pd

# Базові оцінки на грудень 2025 (з аналізу)
data = {
"year": [2023, 2024, 2025],
"bilateral_trade_usd_billion": [180, 225, 203], # >200B з падінням ~10%
"russia_energy_export_share_to_china": [0.68, 0.72, 0.75],
"china_share_of_russia_total_trade": [0.32, 0.36, 0.39],
"trade_growth_rate": [0.12, 0.25, -0.10]
}

df = pd.DataFrame(data)

# Індекс залежності РФ від КНР
# (частка торгівлі * частка енергоресурсів)
df["dependency_index"] = (
df["china_share_of_russia_total_trade"] *
df["russia_energy_export_share_to_china"]
)

print(df)
🔹 2. Інтерпретація залежності (логічна модель)
Копіювати код
Python
def interpret_dependency(index):
if index < 0.15:
return "Low dependency"
elif index < 0.25:
return "Moderate dependency"
else:
return "High dependency"

df["dependency_level"] = df["dependency_index"].apply(interpret_dependency)

print(df[["year", "dependency_index", "dependency_level"]])
🔹 3. Сценарний аналіз: що буде при подальших санкціях
Копіювати код
Python
def trade_scenario(current_trade, shock_percent):
"""
shock_percent: негативний % (наприклад -0.2 = -20%)
"""
return round(current_trade * (1 + shock_percent), 2)

scenarios = {
"baseline": 0.0,
"sanctions_pressure": -0.15,
"china_import_restrictions": -0.25,
}

current_trade = df.loc[df["year"] == 2025, "bilateral_trade_usd_billion"].iloc[0]

scenario_results = {
name: trade_scenario(current_trade, shock)
for name, shock in scenarios.items()
}

print("Scenario outcomes (USD billion):")
for k, v in scenario_results.items():
print(f"{k}: {v}")
🔹 4. Візуалізація тренду + залежності
Копіювати код
Python
import matplotlib.pyplot as plt

plt.figure()
plt.plot(df["year"], df["bilateral_trade_usd_billion"], marker='o')
plt.title("Russia–China Trade Volume (USD Billion)")
plt.xlabel("Year")
plt.ylabel("Trade Volume")
plt.grid(True)
plt.show()

plt.figure()
plt.plot(df["year"], df["dependency_index"], marker='o')
plt.title("Russia Dependency Index on China")
plt.xlabel("Year")
plt.ylabel("Dependency Index")
plt.grid(True)
plt.show()
🔹 5. Аналітичний висновок (машинна логіка)
Копіювати код
Python
latest = df.iloc[-1]

if latest["dependency_index"] > 0.25 and latest["trade_growth_rate"] < 0:
conclusion = (
"Russia is structurally dependent on China, "
"but the relationship shows economic friction "
"and asymmetry rather than full subordination."
)
else:
conclusion = "Economic partnership remains balanced."

print("Conclusion:")
print(conclusion)
📌 Що цей код відображає концептуально
✔️ Не “appendage”, але асиметрична залежність
✔️ Китай = економічний «lifeline» під санкціями
✔️ Падіння торгівлі ≠ кінець партнерства
✔️ Енергетична монозалежність — ключовий ризик РФ
Якщо хочеш:
🔹 версію для Jupyter Notebook
🔹 додати CRYPTO / CAPITAL FLOWS
🔹 перекласти у quantitative risk model
🔹 оформити як EU policy brief / think-tank code
— скажи, в якому форматі 👍#icrypto - index 6-8
D. E. A. L.#DEAL #russia #USA European Parliament Office in Ireland #EUROPE #ukraine #economics #CRYPTO #CAPITAL #WAR As of December 2025, Russia and China have a strong economic partnership, with bilateral trade exceeding $200 #billion. China is Russia's top trading partner, providing an economic lifeline amid Western sanctions—Russia exports discounted energy (oil/gas make up ~75% of its sales to China), while importing goods and tech. However, trade dipped ~10% from 2024 peaks due to frictions like Russian import curbs on Chinese cars to protect local industries. While Russia is increasingly reliant, it's a mutual strategic tie, not full subordination. "Appendage" may overstate it, but dependency is evident. 23:55 2025 Нижче — приклад Python-коду, згенерованого на основі наданого тобою аналізу, який: структурує ключові економічні твердження (торгівля РФ–КНР), моделює залежність Росії від Китаю, показує сценарний аналіз (що буде при падінні торгівлі), будує просту візуалізацію. Код аналітичний / ілюстративний, не прив’язаний до live-даних (бо ти вже дав узагальнений аналіз). 🔹 1. Структура даних + базові метрики залежності Копіювати код #python #DeAl import pandas as pd # Базові оцінки на грудень 2025 (з аналізу) data = { "year": [2023, 2024, 2025], "bilateral_trade_usd_billion": [180, 225, 203], # >200B з падінням ~10% "russia_energy_export_share_to_china": [0.68, 0.72, 0.75], "china_share_of_russia_total_trade": [0.32, 0.36, 0.39], "trade_growth_rate": [0.12, 0.25, -0.10] } df = pd.DataFrame(data) # Індекс залежності РФ від КНР # (частка торгівлі * частка енергоресурсів) df["dependency_index"] = ( df["china_share_of_russia_total_trade"] * df["russia_energy_export_share_to_china"] ) print(df) 🔹 2. Інтерпретація залежності (логічна модель) Копіювати код Python def interpret_dependency(index): if index < 0.15: return "Low dependency" elif index < 0.25: return "Moderate dependency" else: return "High dependency" df["dependency_level"] = df["dependency_index"].apply(interpret_dependency) print(df[["year", "dependency_index", "dependency_level"]]) 🔹 3. Сценарний аналіз: що буде при подальших санкціях Копіювати код Python def trade_scenario(current_trade, shock_percent): """ shock_percent: негативний % (наприклад -0.2 = -20%) """ return round(current_trade * (1 + shock_percent), 2) scenarios = { "baseline": 0.0, "sanctions_pressure": -0.15, "china_import_restrictions": -0.25, } current_trade = df.loc[df["year"] == 2025, "bilateral_trade_usd_billion"].iloc[0] scenario_results = { name: trade_scenario(current_trade, shock) for name, shock in scenarios.items() } print("Scenario outcomes (USD billion):") for k, v in scenario_results.items(): print(f"{k}: {v}") 🔹 4. Візуалізація тренду + залежності Копіювати код Python import matplotlib.pyplot as plt plt.figure() plt.plot(df["year"], df["bilateral_trade_usd_billion"], marker='o') plt.title("Russia–China Trade Volume (USD Billion)") plt.xlabel("Year") plt.ylabel("Trade Volume") plt.grid(True) plt.show() plt.figure() plt.plot(df["year"], df["dependency_index"], marker='o') plt.title("Russia Dependency Index on China") plt.xlabel("Year") plt.ylabel("Dependency Index") plt.grid(True) plt.show() 🔹 5. Аналітичний висновок (машинна логіка) Копіювати код Python latest = df.iloc[-1] if latest["dependency_index"] > 0.25 and latest["trade_growth_rate"] < 0: conclusion = ( "Russia is structurally dependent on China, " "but the relationship shows economic friction " "and asymmetry rather than full subordination." ) else: conclusion = "Economic partnership remains balanced." print("Conclusion:") print(conclusion) 📌 Що цей код відображає концептуально ✔️ Не “appendage”, але асиметрична залежність ✔️ Китай = економічний «lifeline» під санкціями ✔️ Падіння торгівлі ≠ кінець партнерства ✔️ Енергетична монозалежність — ключовий ризик РФ Якщо хочеш: 🔹 версію для Jupyter Notebook 🔹 додати CRYPTO / CAPITAL FLOWS 🔹 перекласти у quantitative risk model 🔹 оформити як EU policy brief / think-tank code — скажи, в якому форматі 👍#icrypto - index 6-8

D. E. A. L.

#DEAL #russia #USA European Parliament Office in Ireland #EUROPE #ukraine #economics #CRYPTO #CAPITAL #WAR As of December 2025, Russia and China have a strong economic partnership, with bilateral trade exceeding $200 #billion. China is Russia's top trading partner, providing an economic lifeline amid Western sanctions—Russia exports discounted energy (oil/gas make up ~75% of its sales to China), while importing goods and tech. However, trade dipped ~10% from 2024 peaks due to frictions like Russian import curbs on Chinese cars to protect local industries. While Russia is increasingly reliant, it's a mutual strategic tie, not full subordination. "Appendage" may overstate it, but dependency is evident.
23:55 2025 Нижче — приклад Python-коду, згенерованого на основі наданого тобою аналізу, який:
структурує ключові економічні твердження (торгівля РФ–КНР),
моделює залежність Росії від Китаю,
показує сценарний аналіз (що буде при падінні торгівлі),
будує просту візуалізацію.
Код аналітичний / ілюстративний, не прив’язаний до live-даних (бо ти вже дав узагальнений аналіз).
🔹 1. Структура даних + базові метрики залежності
Копіювати код
#python #DeAl
import pandas as pd

# Базові оцінки на грудень 2025 (з аналізу)
data = {
"year": [2023, 2024, 2025],
"bilateral_trade_usd_billion": [180, 225, 203], # >200B з падінням ~10%
"russia_energy_export_share_to_china": [0.68, 0.72, 0.75],
"china_share_of_russia_total_trade": [0.32, 0.36, 0.39],
"trade_growth_rate": [0.12, 0.25, -0.10]
}

df = pd.DataFrame(data)

# Індекс залежності РФ від КНР
# (частка торгівлі * частка енергоресурсів)
df["dependency_index"] = (
df["china_share_of_russia_total_trade"] *
df["russia_energy_export_share_to_china"]
)

print(df)
🔹 2. Інтерпретація залежності (логічна модель)
Копіювати код
Python
def interpret_dependency(index):
if index < 0.15:
return "Low dependency"
elif index < 0.25:
return "Moderate dependency"
else:
return "High dependency"

df["dependency_level"] = df["dependency_index"].apply(interpret_dependency)

print(df[["year", "dependency_index", "dependency_level"]])
🔹 3. Сценарний аналіз: що буде при подальших санкціях
Копіювати код
Python
def trade_scenario(current_trade, shock_percent):
"""
shock_percent: негативний % (наприклад -0.2 = -20%)
"""
return round(current_trade * (1 + shock_percent), 2)

scenarios = {
"baseline": 0.0,
"sanctions_pressure": -0.15,
"china_import_restrictions": -0.25,
}

current_trade = df.loc[df["year"] == 2025, "bilateral_trade_usd_billion"].iloc[0]

scenario_results = {
name: trade_scenario(current_trade, shock)
for name, shock in scenarios.items()
}

print("Scenario outcomes (USD billion):")
for k, v in scenario_results.items():
print(f"{k}: {v}")
🔹 4. Візуалізація тренду + залежності
Копіювати код
Python
import matplotlib.pyplot as plt

plt.figure()
plt.plot(df["year"], df["bilateral_trade_usd_billion"], marker='o')
plt.title("Russia–China Trade Volume (USD Billion)")
plt.xlabel("Year")
plt.ylabel("Trade Volume")
plt.grid(True)
plt.show()

plt.figure()
plt.plot(df["year"], df["dependency_index"], marker='o')
plt.title("Russia Dependency Index on China")
plt.xlabel("Year")
plt.ylabel("Dependency Index")
plt.grid(True)
plt.show()
🔹 5. Аналітичний висновок (машинна логіка)
Копіювати код
Python
latest = df.iloc[-1]

if latest["dependency_index"] > 0.25 and latest["trade_growth_rate"] < 0:
conclusion = (
"Russia is structurally dependent on China, "
"but the relationship shows economic friction "
"and asymmetry rather than full subordination."
)
else:
conclusion = "Economic partnership remains balanced."

print("Conclusion:")
print(conclusion)
📌 Що цей код відображає концептуально
✔️ Не “appendage”, але асиметрична залежність
✔️ Китай = економічний «lifeline» під санкціями
✔️ Падіння торгівлі ≠ кінець партнерства
✔️ Енергетична монозалежність — ключовий ризик РФ
Якщо хочеш:
🔹 версію для Jupyter Notebook
🔹 додати CRYPTO / CAPITAL FLOWS
🔹 перекласти у quantitative risk model
🔹 оформити як EU policy brief / think-tank code
— скажи, в якому форматі 👍#icrypto - index 6-8
#USDT🔥🔥🔥 @SatoshiNakatoto @Binance_Ukraine @AnT_Capital @Square-Creator-6a1a8433d24e $XRP $UAH 2026-2027 Hybrid formation Putin's Russia proved this terrible FSB country-structure to negative growth in all areas ,not has growth ,high school by 0.1 even in defensive sector.I now I survive.b only 3rd cities : Moscow ,Saint Petersburg rg, Kaza b.mod Rousseau collection without a trace their and without a doubt naked on 8 generation Russians.
#USDT🔥🔥🔥 @Satoshi Nakatoto @Binance Ukraine @AnT Capital @salma56 $XRP $UAH 2026-2027 Hybrid formation Putin's Russia proved this terrible FSB country-structure to negative growth in all areas ,not has growth ,high school by 0.1 even in defensive sector.I now I survive.b only 3rd cities : Moscow ,Saint Petersburg rg, Kaza b.mod Rousseau collection without a trace their and without a doubt naked on 8 generation Russians.
Convert 4.57466595 UAH to 0.054 XRP
See original
#BTCVSGOLD #Yuan #e2n #e2ee e2eencryprion $ENA rub {future}(ENAUSDT) import socket def scan_port(ip, port): try: # Creating a socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(0.5) # Trying to connect result = sock.connect_ex((ip, port)) if result == 0: print(f"Port {port}: OPEN") sock.close() except Exception as e: print(f"Error scanning port {port}: {e}") target_ip = "127.0.0.1" # Your local address for testing ports_to_scan = [80, 443, 8080] print(f"Scanning {target_ip}...") for port in ports_to_scan: scan_port(target_ip, port) #phyton
#BTCVSGOLD #Yuan #e2n #e2ee e2eencryprion $ENA rub
import socket

def scan_port(ip, port):
try:
# Creating a socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(0.5)
# Trying to connect
result = sock.connect_ex((ip, port))
if result == 0:
print(f"Port {port}: OPEN")
sock.close()
except Exception as e:
print(f"Error scanning port {port}: {e}")

target_ip = "127.0.0.1" # Your local address for testing
ports_to_scan = [80, 443, 8080]

print(f"Scanning {target_ip}...")
for port in ports_to_scan:
scan_port(target_ip, port) #phyton
See original
#USJobsData #rusjobsdata #chinajobsdata #iranjobsdata #⁶⁶⁶ import ssl import socket def check_ssl_expiry(hostname): context = ssl.create_default_context() with socket.create_connection((hostname, 443)) as sock: with context.wrap_socket(sock, server_hostname=hostname) as ssock: cert = ssock.getpeercert() # Display information about the issuer and the validity period of the certificate print(f"Certificate for {hostname} verified.") print(f"Issuer: {cert['issuer']}") return cert # Example usage try: check_ssl_expiry('signal.org') except Exception as e: print(f"Connection security error: {e}") $u3³#7 001gGg
#USJobsData #rusjobsdata #chinajobsdata #iranjobsdata #⁶⁶⁶ import ssl
import socket

def check_ssl_expiry(hostname):
context = ssl.create_default_context()
with socket.create_connection((hostname, 443)) as sock:
with context.wrap_socket(sock, server_hostname=hostname) as ssock:
cert = ssock.getpeercert()
# Display information about the issuer and the validity period of the certificate
print(f"Certificate for {hostname} verified.")
print(f"Issuer: {cert['issuer']}")
return cert

# Example usage
try:
check_ssl_expiry('signal.org')
except Exception as e:
print(f"Connection security error: {e}") $u3³#7 001gGg
See original
hybrid economye #Epstein : The connections of Jeffrey Epstein with Putin, Trump, and Kim Jong-unJeffrey Epstein, an American financier and convicted sex offender, had a wide network of contacts among influential figures. Recently released documents (letters, photos, and other materials from his archives, released by the U.S. Congress in 2025) shed light on some connections. However, no direct evidence of shared connections between Putin, Trump, and Kim Jong-un through Epstein has been found. Below is a factual overview based on available sources.Connection with Donald TrumpEpstein and Trump were acquainted from the late 1980s to the early 2000s. They often interacted in social circles (for example, at Mar-a-Lago, Trump's resort in Florida).

hybrid economy

e #Epstein : The connections of Jeffrey Epstein with Putin, Trump, and Kim Jong-unJeffrey Epstein, an American financier and convicted sex offender, had a wide network of contacts among influential figures. Recently released documents (letters, photos, and other materials from his archives, released by the U.S. Congress in 2025) shed light on some connections. However, no direct evidence of shared connections between Putin, Trump, and Kim Jong-un through Epstein has been found. Below is a factual overview based on available sources.Connection with Donald TrumpEpstein and Trump were acquainted from the late 1980s to the early 2000s. They often interacted in social circles (for example, at Mar-a-Lago, Trump's resort in Florida).
Quoted content has been removed
#7GERA #NIS2 #ENISA #7GERA #ENISA #NIS2 #CCDCOE #UkraineRussiaWar : $BTC / $ETH {spot}(ETHUSDT) import networkx as nx import matplotlib.pyplot as plt import random # Define the security architecture graph def build_security_graph(): G = nx.Graph() # Nodes: Countries/Regions (focus on Europe + Ukraine, no US) nodes = [ 'Ukraine', 'Poland', 'Germany', 'France', 'UK', 'Estonia', 'Romania', 'Bulgaria', 'Sweden', 'Finland', 'Turkey', 'Switzerland' # Neutral for data ] G.add_nodes_from(nodes) # Edges: Alliances/Priorities (geopolitical, economic, cyber, info) # Weights: Strength (1-10, higher = stronger tie) edges = [ ('Ukraine', 'Poland', {'weight': 9, 'type': 'geopolitical/economic'}), ('Ukraine', 'Germany', {'weight': 8, 'type': 'economic/cyber'}), ('Ukraine', 'France', {'weight': 7, 'type': 'info/soft power'}), ('Ukraine', 'UK', {'weight': 8, 'type': 'military/intel'}), ('Ukraine', 'Estonia', {'weight': 6, 'type': 'cyber'}), ('Ukraine', 'Romania', {'weight': 7, 'type': 'geopolitical/black sea'}), ('Poland', 'Germany', {'weight': 9, 'type': 'economic'}), ('Germany', 'France', {'weight': 10, 'type': 'EU core'}), ('France', 'UK', {'weight': 7, 'type': 'post-Brexit'}), ('Estonia', 'Sweden', {'weight': 8, 'type': 'nordic cyber'}), ('Sweden', 'Finland', {'weight': 9, 'type': 'nordic'}), ('Romania', 'Bulgaria', {'weight': 6, 'type': 'black sea'}), ('Ukraine', 'Turkey', {'weight': 5, 'type': 'military/drone'}), ('Switzerland', 'Germany', {'weight': 6, 'type': 'data protection'}), ('Switzerland', 'Ukraine', {'weight': 4, 'type': 'neutral data hub'}) ] G.add_edges_from(edges) return G # Simulate hybrid threat propagation (e.g., cyber attack starting from external node) def simulate_threat(G, start_node='External_Threat', target='Ukraine', steps=5): # Add external threat node G.add_node(start_node) # Connect threat to vulnerable edges (e.g., to Russia-facing nodes) G.add_edge(start_node, 'Ukraine', {'weight': 1, 'type': 'hybrid'}) G.add_edge(start_node, 'Estonia', {'weight': 1, 'type': 'cyber'}) G.add_edge(start_node, 'Romania', {'weight': 1, 'type': 'info'}) # Simple propagation: Random walk with resilience check current = start_node path = [current] resilience_scores = {node: random.uniform(0.7, 1.0) for node in G.nodes()} # High resilience in network for _ in range(steps): neighbors = list(G.neighbors(current)) if not neighbors: break next_node = random.choice(neighbors) edge_weight = G[current][next_node]['weight'] # Resilience dampens propagation if random.random() > (edge_weight / 10) * resilience_scores[next_node]: print(f"Threat blocked at {next_node} due to resilience.") break current = next_node path.append(current) return path, resilience_scores[target] # Visualize the graph def visualize_graph(G): pos = nx.spring_layout(G) edge_labels = nx.get_edge_attributes(G, 'type') nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=500) nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.title("European-Ukraine Security Architecture Graph") plt.show() # Or save as image: plt.savefig('security_arch.png') # Main execution if __name__ == "__main__": G = build_security_graph() threat_path, ukraine_resilience = simulate_threat(G, steps=10) print(f"Simulated Threat Path: {threat_path}") print(f"Ukraine Resilience Score: {ukraine_resilience:.2f}") visualize_graph(G) # Comment out if no display; save instead for image {spot}(BTCUSDT)

#7GERA #NIS2 #ENISA

#7GERA #ENISA #NIS2 #CCDCOE #UkraineRussiaWar : $BTC / $ETH
import networkx as nx import matplotlib.pyplot as plt import random # Define the security architecture graph def build_security_graph(): G = nx.Graph() # Nodes: Countries/Regions (focus on Europe + Ukraine, no US) nodes = [ 'Ukraine', 'Poland', 'Germany', 'France', 'UK', 'Estonia', 'Romania', 'Bulgaria', 'Sweden', 'Finland', 'Turkey', 'Switzerland' # Neutral for data ] G.add_nodes_from(nodes) # Edges: Alliances/Priorities (geopolitical, economic, cyber, info) # Weights: Strength (1-10, higher = stronger tie) edges = [ ('Ukraine', 'Poland', {'weight': 9, 'type': 'geopolitical/economic'}), ('Ukraine', 'Germany', {'weight': 8, 'type': 'economic/cyber'}), ('Ukraine', 'France', {'weight': 7, 'type': 'info/soft power'}), ('Ukraine', 'UK', {'weight': 8, 'type': 'military/intel'}), ('Ukraine', 'Estonia', {'weight': 6, 'type': 'cyber'}), ('Ukraine', 'Romania', {'weight': 7, 'type': 'geopolitical/black sea'}), ('Poland', 'Germany', {'weight': 9, 'type': 'economic'}), ('Germany', 'France', {'weight': 10, 'type': 'EU core'}), ('France', 'UK', {'weight': 7, 'type': 'post-Brexit'}), ('Estonia', 'Sweden', {'weight': 8, 'type': 'nordic cyber'}), ('Sweden', 'Finland', {'weight': 9, 'type': 'nordic'}), ('Romania', 'Bulgaria', {'weight': 6, 'type': 'black sea'}), ('Ukraine', 'Turkey', {'weight': 5, 'type': 'military/drone'}), ('Switzerland', 'Germany', {'weight': 6, 'type': 'data protection'}), ('Switzerland', 'Ukraine', {'weight': 4, 'type': 'neutral data hub'}) ] G.add_edges_from(edges) return G # Simulate hybrid threat propagation (e.g., cyber attack starting from external node) def simulate_threat(G, start_node='External_Threat', target='Ukraine', steps=5): # Add external threat node G.add_node(start_node) # Connect threat to vulnerable edges (e.g., to Russia-facing nodes) G.add_edge(start_node, 'Ukraine', {'weight': 1, 'type': 'hybrid'}) G.add_edge(start_node, 'Estonia', {'weight': 1, 'type': 'cyber'}) G.add_edge(start_node, 'Romania', {'weight': 1, 'type': 'info'}) # Simple propagation: Random walk with resilience check current = start_node path = [current] resilience_scores = {node: random.uniform(0.7, 1.0) for node in G.nodes()} # High resilience in network for _ in range(steps): neighbors = list(G.neighbors(current)) if not neighbors: break next_node = random.choice(neighbors) edge_weight = G[current][next_node]['weight'] # Resilience dampens propagation if random.random() > (edge_weight / 10) * resilience_scores[next_node]: print(f"Threat blocked at {next_node} due to resilience.") break current = next_node path.append(current) return path, resilience_scores[target] # Visualize the graph def visualize_graph(G): pos = nx.spring_layout(G) edge_labels = nx.get_edge_attributes(G, 'type') nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=500) nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.title("European-Ukraine Security Architecture Graph") plt.show() # Or save as image: plt.savefig('security_arch.png') # Main execution if __name__ == "__main__": G = build_security_graph() threat_path, ukraine_resilience = simulate_threat(G, steps=10) print(f"Simulated Threat Path: {threat_path}") print(f"Ukraine Resilience Score: {ukraine_resilience:.2f}") visualize_graph(G) # Comment out if no display; save instead for image
See original
openness/secrecy/powerPutin OpenAI Openness is a loss of power. Secrecy is the illusion of power. #oprussia #power #geopolitics #psychology To view hotkeys, press #questionmark #Viewhotkeys #Automatically View #newposts https://youtu.be/EowxUo6Uiio?si=hHbs7_oro1NqRnCO comment and give a psychological analysis of V. V. Putin's actions regarding relationships with women, mistresses (names, surnames, years), appointed and unappointed children, how this aligns with the rhetoric of family values, narratives about Russian screws, deception, concealment, and hiding from people, what role friends, enemies, partners, and servants play. How he managed to replace and explain such a mix of religions, and the apologist of which religion he is, who is an example and authority for him, how he experiences internal conflicts, images, and why he cannot tolerate criticism - humor!? How many people do you think Putin can trust at the present time, and what did Nemtsov mean when he said "Putin is crazy!"?

openness/secrecy/power

Putin OpenAI Openness is a loss of power. Secrecy is the illusion of power. #oprussia #power #geopolitics #psychology To view hotkeys, press #questionmark

#Viewhotkeys

#Automatically

View #newposts

https://youtu.be/EowxUo6Uiio?si=hHbs7_oro1NqRnCO comment and give a psychological analysis of V. V. Putin's actions regarding relationships with women, mistresses (names, surnames, years), appointed and unappointed children, how this aligns with the rhetoric of family values, narratives about Russian screws, deception, concealment, and hiding from people, what role friends, enemies, partners, and servants play. How he managed to replace and explain such a mix of religions, and the apologist of which religion he is, who is an example and authority for him, how he experiences internal conflicts, images, and why he cannot tolerate criticism - humor!? How many people do you think Putin can trust at the present time, and what did Nemtsov mean when he said "Putin is crazy!"?
See original
transformation artificial intelligence LTC company player finance egg system irony: 1.mathematics 2.philosophy or religion 3.languages 4.professional sports #worldcurrency
transformation artificial intelligence LTC company player finance egg system irony: 1.mathematics 2.philosophy or religion 3.languages 4.professional sports #worldcurrency
TheEndofrussia
--
#USJobsData $ETH #STRAXARMY #2Tron #oil
36$ ,36$,36$ price capital and future Russian there are go in oil worker x there are Ro artificial intelligence assimilation languages and hypnosis masses, slaves ,there are there are genetics, atom, come in AND, drugs ,walkie-talkies
#USJobsData $ETH #STRAXARMY #2Tron #oil 36$ ,36$,36$ price capital and future Russian there are go in oil worker x there are Ro artificial intelligence assimilation languages and hypnosis masses, slaves ,there are there are genetics, atom, come in AND, drugs ,walkie-talkies
#USJobsData $ETH #STRAXARMY #2Tron #oil
36$ ,36$,36$ price capital and future Russian there are go in oil worker x there are Ro artificial intelligence assimilation languages and hypnosis masses, slaves ,there are there are genetics, atom, come in AND, drugs ,walkie-talkies
#Generation numbers #Nicole good luck mint period for the rest noy destruction broken there are it is ICT Russia. $BTC ¹$ETH ²$XRP ³$ETH⁴ $SOL⁵ #AI Defence Ukraine 💙💛🕸️🚀❗60 85 142 199 61 12234 和 31 40
#Generation numbers #Nicole good luck mint period for the rest noy destruction broken there are it is ICT Russia. $BTC ¹$ETH ²$XRP ³$ETH ⁴ $SOL⁵ #AI Defence Ukraine 💙💛🕸️🚀❗60

85

142

199

61

12234



31

40
23:00 ²⁰²⁵ #bybit #byUsdt #problemcookie #viruscontent #BinanceWalletWeb https://x.com/SuperUkraine/status/1959696117056336198?t=kOTyXPbX0cmAU0OFXefirQ&s=chatgpt5
23:00 ²⁰²⁵ #bybit #byUsdt #problemcookie #viruscontent #BinanceWalletWeb https://x.com/SuperUkraine/status/1959696117056336198?t=kOTyXPbX0cmAU0OFXefirQ&s=chatgpt5
TheEndofrussia
--
#opchina #oprussia #opiran $USDT #en #CryptoShemes ❗🕸️💛🚀💙 #此時此刻
#Oprussia²⁰²⁵ #Web 2.0 💙🚀🕸️💛☠️#GlorytoUkraine #Victorytogether https://vm.tiktok.com/ZMAFabDxM/ #ChatGPTo4 #Hybridwars #Geopolitics #russianvalues #Economics and #Europeanvalue
#Oprussia²⁰²⁵ #Web 2.0 💙🚀🕸️💛☠️#GlorytoUkraine #Victorytogether https://vm.tiktok.com/ZMAFabDxM/ #ChatGPTo4 #Hybridwars #Geopolitics #russianvalues #Economics and #Europeanvalue
TheEndofrussia
--
#opchina #oprussia #opiran $USDT #en #CryptoShemes ❗🕸️💛🚀💙 #此時此刻
#Oprussia²⁰²⁵ #Web 2.0 💙🚀🕸️💛☠️#GlorytoUkraine #Victorytogether https://vm.tiktok.com/ZMAFabDxM/ #ChatGPTo4 #Hybridwars #Geopolitics #russianvalues #Economics and #Europeanvalues #bybit #byUsdt #problemcookie #viruscontent #BinanceWalletWeb https://x.com/SuperUkraine/status/1959696117056336198?t=kOTyXPbX0cmAU0OFXefirQ&s=chatgpt5 #oil #aeroflot #sanctions #credit #debit $ETH $BTC $XRP
#Oprussia²⁰²⁵ #Web 2.0 💙🚀🕸️💛☠️#GlorytoUkraine #Victorytogether https://vm.tiktok.com/ZMAFabDxM/ #ChatGPTo4 #Hybridwars #Geopolitics #russianvalues #Economics and #Europeanvalues #bybit #byUsdt #problemcookie #viruscontent #BinanceWalletWeb https://x.com/SuperUkraine/status/1959696117056336198?t=kOTyXPbX0cmAU0OFXefirQ&s=chatgpt5 #oil #aeroflot #sanctions #credit #debit $ETH $BTC $XRP
#Oprussia²⁰²⁵ #Web 2.0 💙🚀🕸️💛☠️#GlorytoUkraine #Victorytogether https://vm.tiktok.com/ZMAFabDxM/ #ChatGPTo4 #Hybridwars #Geopolitics #russianvalues #EconomicSanctions and #Europeanvalues #bybit #byUsdt #problemcookie #viruscontent #BinanceWalletWeb https://x.com/SuperUkraine/status/1959696117056336198?t=kOTyXPbX0cmAU0OFXefirQ&s=chatgpt5 $BTC {future}(BTCUSDT)
#Oprussia²⁰²⁵ #Web 2.0 💙🚀🕸️💛☠️#GlorytoUkraine #Victorytogether https://vm.tiktok.com/ZMAFabDxM/ #ChatGPTo4 #Hybridwars #Geopolitics #russianvalues #EconomicSanctions and #Europeanvalues #bybit #byUsdt #problemcookie #viruscontent #BinanceWalletWeb https://x.com/SuperUkraine/status/1959696117056336198?t=kOTyXPbX0cmAU0OFXefirQ&s=chatgpt5 $BTC
salma56
--
#news_update

⚡️ Urgent Geopolitical Update
Russia has officially stated that no talks are currently planned between President Vladimir Putin and Ukrainian President Volodymyr Zelensky, cutting through recent global rumors of potential dialogue. The Kremlin’s clarification comes at a time when speculation about renewed negotiations has been mounting, fueled by international calls for de-escalation. While several countries continue to push for diplomatic channels to reopen, Moscow emphasized that no concrete steps toward a direct meeting are on the agenda. This update highlights the ongoing uncertainty in the conflict, reminding markets and global observers to remain cautious as geopolitical tensions remain high.$BTC $ETH
Login to explore more contents
Explore the latest crypto news
⚡️ Be a part of the latests discussions in crypto
💬 Interact with your favorite creators
👍 Enjoy content that interests you
Email / Phone number

Latest News

--
View More

Trending Articles

tonySMC
View More
Sitemap
Cookie Preferences
Platform T&Cs