#DEAL #russia #USA European Parliament Office in Ireland #EUROPE #ukraine #economics #CRYPTO #CAPITAL #WAR As of December 2025, Russia and China have a strong economic partnership, with bilateral trade exceeding $200 #billion. China is Russia's top trading partner, providing an economic lifeline amid Western sanctions—Russia exports discounted energy (oil/gas make up ~75% of its sales to China), while importing goods and tech. However, trade dipped ~10% from 2024 peaks due to frictions like Russian import curbs on Chinese cars to protect local industries. While Russia is increasingly reliant, it's a mutual strategic tie, not full subordination. "Appendage" may overstate it, but dependency is evident. 23:55 2025 Нижче — приклад Python-коду, згенерованого на основі наданого тобою аналізу, який: структурує ключові економічні твердження (торгівля РФ–КНР), моделює залежність Росії від Китаю, показує сценарний аналіз (що буде при падінні торгівлі), будує просту візуалізацію. Код аналітичний / ілюстративний, не прив’язаний до live-даних (бо ти вже дав узагальнений аналіз). 🔹 1. Структура даних + базові метрики залежності Копіювати код #python #DeAl import pandas as pd
# Базові оцінки на грудень 2025 (з аналізу) data = { "year": [2023, 2024, 2025], "bilateral_trade_usd_billion": [180, 225, 203], # >200B з падінням ~10% "russia_energy_export_share_to_china": [0.68, 0.72, 0.75], "china_share_of_russia_total_trade": [0.32, 0.36, 0.39], "trade_growth_rate": [0.12, 0.25, -0.10] }
df = pd.DataFrame(data)
# Індекс залежності РФ від КНР # (частка торгівлі * частка енергоресурсів) df["dependency_index"] = ( df["china_share_of_russia_total_trade"] * df["russia_energy_export_share_to_china"] )
print(df) 🔹 2. Інтерпретація залежності (логічна модель) Копіювати код Python def interpret_dependency(index): if index < 0.15: return "Low dependency" elif index < 0.25: return "Moderate dependency" else: return "High dependency"
scenario_results = { name: trade_scenario(current_trade, shock) for name, shock in scenarios.items() }
print("Scenario outcomes (USD billion):") for k, v in scenario_results.items(): print(f"{k}: {v}") 🔹 4. Візуалізація тренду + залежності Копіювати код Python import matplotlib.pyplot as plt
plt.figure() plt.plot(df["year"], df["dependency_index"], marker='o') plt.title("Russia Dependency Index on China") plt.xlabel("Year") plt.ylabel("Dependency Index") plt.grid(True) plt.show() 🔹 5. Аналітичний висновок (машинна логіка) Копіювати код Python latest = df.iloc[-1]
if latest["dependency_index"] > 0.25 and latest["trade_growth_rate"] < 0: conclusion = ( "Russia is structurally dependent on China, " "but the relationship shows economic friction " "and asymmetry rather than full subordination." ) else: conclusion = "Economic partnership remains balanced."
print("Conclusion:") print(conclusion) 📌 Що цей код відображає концептуально ✔️ Не “appendage”, але асиметрична залежність ✔️ Китай = економічний «lifeline» під санкціями ✔️ Падіння торгівлі ≠ кінець партнерства ✔️ Енергетична монозалежність — ключовий ризик РФ Якщо хочеш: 🔹 версію для Jupyter Notebook 🔹 додати CRYPTO / CAPITAL FLOWS 🔹 перекласти у quantitative risk model 🔹 оформити як EU policy brief / think-tank code — скажи, в якому форматі 👍#icrypto - index 6-8
#DEAL #russia #USA European Parliament Office in Ireland #EUROPE #ukraine #economics #CRYPTO #CAPITAL #WAR As of December 2025, Russia and China have a strong economic partnership, with bilateral trade exceeding $200 #billion. China is Russia's top trading partner, providing an economic lifeline amid Western sanctions—Russia exports discounted energy (oil/gas make up ~75% of its sales to China), while importing goods and tech. However, trade dipped ~10% from 2024 peaks due to frictions like Russian import curbs on Chinese cars to protect local industries. While Russia is increasingly reliant, it's a mutual strategic tie, not full subordination. "Appendage" may overstate it, but dependency is evident. 23:55 2025 Нижче — приклад Python-коду, згенерованого на основі наданого тобою аналізу, який: структурує ключові економічні твердження (торгівля РФ–КНР), моделює залежність Росії від Китаю, показує сценарний аналіз (що буде при падінні торгівлі), будує просту візуалізацію. Код аналітичний / ілюстративний, не прив’язаний до live-даних (бо ти вже дав узагальнений аналіз). 🔹 1. Структура даних + базові метрики залежності Копіювати код #python #DeAl import pandas as pd
# Базові оцінки на грудень 2025 (з аналізу) data = { "year": [2023, 2024, 2025], "bilateral_trade_usd_billion": [180, 225, 203], # >200B з падінням ~10% "russia_energy_export_share_to_china": [0.68, 0.72, 0.75], "china_share_of_russia_total_trade": [0.32, 0.36, 0.39], "trade_growth_rate": [0.12, 0.25, -0.10] }
df = pd.DataFrame(data)
# Індекс залежності РФ від КНР # (частка торгівлі * частка енергоресурсів) df["dependency_index"] = ( df["china_share_of_russia_total_trade"] * df["russia_energy_export_share_to_china"] )
print(df) 🔹 2. Інтерпретація залежності (логічна модель) Копіювати код Python def interpret_dependency(index): if index < 0.15: return "Low dependency" elif index < 0.25: return "Moderate dependency" else: return "High dependency"
scenario_results = { name: trade_scenario(current_trade, shock) for name, shock in scenarios.items() }
print("Scenario outcomes (USD billion):") for k, v in scenario_results.items(): print(f"{k}: {v}") 🔹 4. Візуалізація тренду + залежності Копіювати код Python import matplotlib.pyplot as plt
plt.figure() plt.plot(df["year"], df["dependency_index"], marker='o') plt.title("Russia Dependency Index on China") plt.xlabel("Year") plt.ylabel("Dependency Index") plt.grid(True) plt.show() 🔹 5. Аналітичний висновок (машинна логіка) Копіювати код Python latest = df.iloc[-1]
if latest["dependency_index"] > 0.25 and latest["trade_growth_rate"] < 0: conclusion = ( "Russia is structurally dependent on China, " "but the relationship shows economic friction " "and asymmetry rather than full subordination." ) else: conclusion = "Economic partnership remains balanced."
print("Conclusion:") print(conclusion) 📌 Що цей код відображає концептуально ✔️ Не “appendage”, але асиметрична залежність ✔️ Китай = економічний «lifeline» під санкціями ✔️ Падіння торгівлі ≠ кінець партнерства ✔️ Енергетична монозалежність — ключовий ризик РФ Якщо хочеш: 🔹 версію для Jupyter Notebook 🔹 додати CRYPTO / CAPITAL FLOWS 🔹 перекласти у quantitative risk model 🔹 оформити як EU policy brief / think-tank code — скажи, в якому форматі 👍#icrypto - index 6-8
#USDT🔥🔥🔥 @Satoshi Nakatoto @Binance Ukraine @AnT Capital @salma56 $XRP $UAH 2026-2027 Hybrid formation Putin's Russia proved this terrible FSB country-structure to negative growth in all areas ,not has growth ,high school by 0.1 even in defensive sector.I now I survive.b only 3rd cities : Moscow ,Saint Petersburg rg, Kaza b.mod Rousseau collection without a trace their and without a doubt naked on 8 generation Russians.
def check_ssl_expiry(hostname): context = ssl.create_default_context() with socket.create_connection((hostname, 443)) as sock: with context.wrap_socket(sock, server_hostname=hostname) as ssock: cert = ssock.getpeercert() # Display information about the issuer and the validity period of the certificate print(f"Certificate for {hostname} verified.") print(f"Issuer: {cert['issuer']}") return cert
# Example usage try: check_ssl_expiry('signal.org') except Exception as e: print(f"Connection security error: {e}") $u3³#7 001gGg
e #Epstein : The connections of Jeffrey Epstein with Putin, Trump, and Kim Jong-unJeffrey Epstein, an American financier and convicted sex offender, had a wide network of contacts among influential figures. Recently released documents (letters, photos, and other materials from his archives, released by the U.S. Congress in 2025) shed light on some connections. However, no direct evidence of shared connections between Putin, Trump, and Kim Jong-un through Epstein has been found. Below is a factual overview based on available sources.Connection with Donald TrumpEpstein and Trump were acquainted from the late 1980s to the early 2000s. They often interacted in social circles (for example, at Mar-a-Lago, Trump's resort in Florida).
Putin OpenAI Openness is a loss of power. Secrecy is the illusion of power. #oprussia #power #geopolitics #psychology To view hotkeys, press #questionmark
#Viewhotkeys
#Automatically
View #newposts
https://youtu.be/EowxUo6Uiio?si=hHbs7_oro1NqRnCO comment and give a psychological analysis of V. V. Putin's actions regarding relationships with women, mistresses (names, surnames, years), appointed and unappointed children, how this aligns with the rhetoric of family values, narratives about Russian screws, deception, concealment, and hiding from people, what role friends, enemies, partners, and servants play. How he managed to replace and explain such a mix of religions, and the apologist of which religion he is, who is an example and authority for him, how he experiences internal conflicts, images, and why he cannot tolerate criticism - humor!? How many people do you think Putin can trust at the present time, and what did Nemtsov mean when he said "Putin is crazy!"?
transformation artificial intelligence LTC company player finance egg system irony: 1.mathematics 2.philosophy or religion 3.languages 4.professional sports #worldcurrency
TheEndofrussia
--
#USJobsData $ETH #STRAXARMY #2Tron #oil 36$ ,36$,36$ price capital and future Russian there are go in oil worker x there are Ro artificial intelligence assimilation languages and hypnosis masses, slaves ,there are there are genetics, atom, come in AND, drugs ,walkie-talkies
#USJobsData $ETH #STRAXARMY #2Tron #oil 36$ ,36$,36$ price capital and future Russian there are go in oil worker x there are Ro artificial intelligence assimilation languages and hypnosis masses, slaves ,there are there are genetics, atom, come in AND, drugs ,walkie-talkies
#Generation numbers #Nicole good luck mint period for the rest noy destruction broken there are it is ICT Russia. $BTC ¹$ETH ²$XRP ³$ETH ⁴ $SOL⁵ #AI Defence Ukraine 💙💛🕸️🚀❗60
⚡️ Urgent Geopolitical Update Russia has officially stated that no talks are currently planned between President Vladimir Putin and Ukrainian President Volodymyr Zelensky, cutting through recent global rumors of potential dialogue. The Kremlin’s clarification comes at a time when speculation about renewed negotiations has been mounting, fueled by international calls for de-escalation. While several countries continue to push for diplomatic channels to reopen, Moscow emphasized that no concrete steps toward a direct meeting are on the agenda. This update highlights the ongoing uncertainty in the conflict, reminding markets and global observers to remain cautious as geopolitical tensions remain high.$BTC $ETH