How Users and Applications Interact With Dusk: Register, Send, and Create
Dusk Network lies a carefully designed interaction model that defines how users, institutions, and applications communicate with the protocol. Instead of exposing raw low-level operations, Dusk introduces a small but powerful set of core message types that structure all meaningful activity on the network. These actions-REGISTER, SEND, and CREATE-may look simple on the surface, but together they form the backbone of a private, programmable, and regulation-ready blockchain. This design choice is intentional. Dusk is not built for chaotic experimentation or anonymous systems with unclear accountability. It is built for real financial use, where every interaction must be secure, verifiable, privacy-preserving, and compliant by design. REGISTER: Entering the Network Privately The REGISTER action is the gateway into the Dusk ecosystem. When a participant wants to join the network, they do not simply generate an address and broadcast it publicly. Instead, REGISTER allows the protocol to securely create a new account by generating a cryptographic key pair. What makes this process unique on Dusk is that identity and account creation are separated from public exposure. Users can register without revealing personal data, wallet history, or external identifiers. The network only sees what it needs to verify correctness-nothing more. This allows Dusk to support privacy-preserving onboarding while still enabling future compliance workflows such as selective disclosure or private KYC when required. For institutions, this matters deeply. It means accounts can be created under controlled conditions, audited when necessary, and integrated into regulated workflows without turning account creation into a public data leak. SEND: Confidential Value Transfer The SEND action handles the movement of native DUSK tokens between participants. On most blockchains, sending tokens exposes sender addresses, receiver addresses, amounts, and sometimes even behavioral patterns. Over time, this creates a transparent financial graph that can be analyzed, exploited, or surveilled. Dusk takes a fundamentally different approach. SEND transactions are fully validated by the network but remain confidential in their internal details. The protocol verifies that the sender has sufficient balance and that the transaction is valid, without revealing balances, transaction histories, or wallet contents to the public. This makes SEND suitable not only for retail transfers, but also for institutional use cases such as payroll, treasury management, settlement between counterparties, and asset movement within regulated environments. Value can move on-chain without turning the ledger into an open financial database. CREATE: Deploying Privacy-Aware Applications The CREATE action enables users and developers to deploy applications on the Dusk Network. These applications are not limited to simple transfers; they can represent complex financial logic such as tokenized securities, voting systems, dividend distribution, compliance rules, and lifecycle management of assets. What distinguishes CREATE on Dusk is how it handles state visibility. Applications can interact with one another and expose non-sensitive state where appropriate, but specific operations—such as asset transfers, ownership checks, voting results, or dividend claims—can remain private. This allows applications to be both interoperable and confidential. In practice, this means developers can build systems that behave like traditional financial infrastructure, where only authorized parties see sensitive data, while the network still enforces correctness and integrity. A Unified Interaction Model for Real Finance By limiting protocol interaction to REGISTER, SEND, and CREATE, Dusk achieves clarity without sacrificing power. Every action is intentional, auditable, and compatible with zero-knowledge verification. There are no hidden shortcuts or undefined behaviors. This interaction model also makes Dusk easier to reason about from a regulatory and security standpoint. Authorities, auditors, and institutions can understand what actions exist, what they do, and how they are enforced-without needing to compromise user privacy or protocol integrity. Most blockchains expose too much by default. Dusk does the opposite. It exposes only what is necessary, and nothing more. REGISTER protects identity, SEND protects value flow, and CREATE protects application logic. Together, they allow Dusk to support private users, institutional finance, and compliant on-chain systems within a single coherent framework. This is not just protocol design-it is infrastructure design for the next generation of blockchain adoption. @Dusk $DUSK #dusk
Rusk VM: Il Motore di Esecuzione Dietro ai Contratti Intelligenti Privati di Dusk
Rusk VM è il livello di esecuzione che trasforma Dusk da una rete di consenso in una blockchain finanziaria completamente programmabile. È una macchina virtuale basata su WebAssembly progettata specificamente per la privacy, il determinismo e l'esecuzione controllata. A differenza degli ambienti generici di smart contract che danno priorità alla flessibilità sopra ogni altra cosa, Rusk VM è progettata per supportare applicazioni regolate e ad alto valore in cui prevedibilità e sicurezza contano più del calcolo illimitato. Rusk VM è responsabile delle transizioni di stato sulla Rete Dusk. Ogni transazione che cambia lo stato del protocollo viene eseguita all'interno della VM. Per garantire equità e prevenire abusi, ogni istruzione della VM ha un costo misurato in gas. Questo sistema di gas non è un pensiero secondario; è fondamentale per il modo in cui Rusk VM evita l'esecuzione illimitata. Anche se la VM è quasi completa di Turing, ogni calcolo è rigorosamente limitato dal gas massimo allocato alla transazione. Questo garantisce la terminazione e protegge la rete da attacchi di denial-of-service, affrontando il classico problema dell'arresto attraverso limiti economici e computazionali.
#plasma $XPL L'utente si connette tramite un'interfaccia frontend, che comunica con la rete tramite RPC. Da lì, le richieste entrano nel Plasma Core, dove il consenso finalizza i blocchi, il layer di esecuzione elabora le transazioni e il ponte nativo gestisce le interazioni con Bitcoin.
Questa chiara separazione mantiene il sistema modulare, scalabile e facile da integrare per gli sviluppatori. Isolando il consenso, l'esecuzione e il bridging all'interno del core, Plasma garantisce affidabilità pur rimanendo accessibile ad applicazioni e utenti. È un flusso semplice in superficie, supportato da un'architettura altamente ottimizzata sotto di esso. @Plasma
Architettura Tecnica di Plasma: Uno Stack Progettato per l'Infrastruttura delle Stablecoin
L'architettura tecnica è progettata con un obiettivo chiaro: creare uno stack blockchain ottimizzato per stablecoin, pagamenti e regolamenti finanziari piuttosto che per speculazioni generali. A differenza delle blockchain Layer 1 tradizionali che raggruppano ogni funzionalità in un unico design monolitico, Plasma segue un'architettura modulare e intenzionale in cui ogni componente svolge un ruolo preciso. Questa separazione delle preoccupazioni migliora le prestazioni, la prevedibilità e la sicurezza, qualità che sono critiche per un'infrastruttura di movimentazione del denaro.
#walrus $WAL Walrus adotta un approccio fondamentalmente diverso allo storage decentralizzato rispetto a Filecoin e Arweave. Invece di una pesante replicazione, Walrus utilizza la codifica di cancellazione per raggiungere un sovraccarico di storage basso di circa 4,5× pur sopravvivendo alla perdita di fino a due terzi dei frammenti.
La rete può continuare ad accettare scritture anche quando fino a un terzo dei frammenti non risponde. Questo design offre una forte tolleranza ai guasti senza costi eccessivi. Walrus evita anche di gestire la propria blockchain per la gestione dei nodi e gli incentivi, scegliendo invece di costruire su Sui. Separando lo storage dal consenso, Walrus raggiunge efficienza, resilienza e semplicità su larga scala. @Walrus 🦭/acc
#walrus $WAL Walrus in the long history of censorship-resistant storage systems. Early academic ideas like the Eternity Service aimed to prevent documents from being suppressed, while peer-to-peer networks such as Napster, Gnutella, Freenet, and Free Haven experimented with decentralized storage and distribution.
These systems relied on unstructured topologies, flood-based search, and heavy replication, which led to poor performance and weak guarantees.
Walrus builds on these lessons but moves beyond them. Instead of best-effort availability, it introduces cryptographic proofs, structured coordination, and efficient encoding, delivering strong availability and scalability without the inefficiencies that limited earlier peer-to-peer designs. @Walrus 🦭/acc
#walrus $WAL Walrus’s real-world scalability under sustained usage. Over a 60-day period, the network reliably stored more than 1.18 TB of slivers and hundreds of gigabytes of blob metadata, while individual storage nodes contributed between 15 TB and 400 TB of capacity. When combined, the system demonstrated the ability to exceed 5 petabytes of total storage.
Most importantly, Walrus showed that storage capacity grows proportionally with the number of participating nodes. This validates a core design promise: Walrus does not rely on vertical scaling or privileged operators. Instead, it achieves massive capacity through horizontal growth, making it suitable for long-term, internet-scale decentralized storage. @Walrus 🦭/acc
#walrus $WAL Walrus scales both capacity and performance as the network grows. The first chart demonstrates that total storage capacity increases almost linearly with the number of storage nodes, proving that Walrus scales horizontally without hidden bottlenecks. As more nodes join the committee, usable capacity grows predictably.
The second chart highlights throughput behavior: read throughput scales strongly with blob size, while write throughput grows more gradually due to encoding and distribution costs. Together, these results confirm Walrus design goals, scalable storage, predictable growth, and efficient read-heavy performance, making it suitable for large-scale, real-world decentralized data workloads. @Walrus 🦭/acc
#walrus $WAL Walrus scales efficiently across different data sizes. For small blobs like 1KB, most operations complete quickly, with storage dominating overall latency while encoding, status checks, and proof publication remain lightweight. As blob size increases to 130MB, the store phase naturally becomes the primary cost due to data transfer, while coordination steps still add minimal overhead.
This shows Walrus core strength: protocol overhead stays almost constant regardless of data size. By separating coordination from data movement, Walrus ensures predictable performance, where latency is driven mainly by network and storage bandwidth, not by complex consensus or heavy on-chain processing. @Walrus 🦭/acc
Payments for Storage and Writes in Walrus: Balancing Competition and Coordination
Walrus approaches payments for storage and writes as an economic coordination problem, not just a technical one. Because @Walrus 🦭/acc is a fully decentralized network made up of independent storage nodes, pricing must balance competition with collaboration. Each node operates autonomously, yet the system must present a unified and predictable experience to storage consumers. This dual requirement shapes how Walrus designs its pricing, resource allocation, and payment flows. Storage nodes in Walrus compete with one another to offer sufficient storage at lower prices. This competition helps keep costs efficient and prevents any single operator from dominating the network. At the same time, Walrus does not expose this complexity directly to users. Instead of forcing users to negotiate with individual nodes, the protocol aggregates node submissions into a unified storage schedule. From the user’s perspective, Walrus behaves like a single coherent storage service, even though it is powered by many competing providers behind the scenes. A key part of this design is how storage resources are defined and allocated. Each node decides how much storage capacity it is willing to commit to the network based on its hardware limits, operational costs, stake, and risk tolerance. Offering more storage increases potential revenue, but it also increases responsibility. If a node fails to meet its commitments, it risks penalties. This self-balancing mechanism encourages nodes to make realistic commitments rather than overpromising capacity they cannot reliably provide. Pricing in #walrus applies not only to stored data but also to write operations. Writing data involves encoding, distributing slivers, collecting acknowledgements, and generating availability proofs. These steps consume bandwidth, computation, and coordination effort. As a result, write operations are priced separately and reflect current network demand. When usage increases, prices can rise to manage load; when demand is lower, storage and writes become more affordable. This dynamic pricing helps Walrus remain efficient under varying conditions. Payment distribution is designed to be simple for users and fair for nodes. Users do not pay nodes individually. Instead, payments flow through the system and are distributed to storage nodes based on their actual contributions. This reduces trust assumptions, simplifies the user experience, and ensures that honest nodes are compensated proportionally. Nodes that consistently perform well are rewarded, while unreliable behavior becomes economically unattractive. Walrus payment model is a foundational part of its security and sustainability. Competitive pricing drives efficiency, collaborative aggregation ensures usability, and incentive-aligned payments promote long-term participation. By tightly integrating economics with protocol design, Walrus turns decentralized storage into a system that can scale globally while remaining reliable, fair, and practical for real-world use. $WAL
Non-Migration Recovery in Walrus: Healing Data Without Reconfiguring the Network
@Walrus 🦭/acc is built with the assumption that storage networks do not fail cleanly. Nodes may become slow, partially responsive, or even adversarial without formally leaving the system. The concept of non-migration recovery exists precisely to handle these messy, real-world scenarios. While Walrus primarily uses recovery pathways during shard migration between epochs, the same mechanisms are deliberately designed to recover data even when no planned migration is taking place. This ensures that availability does not depend on perfect coordination or graceful exits by storage nodes. In many decentralized systems, recovery is tightly coupled to migration events. Data moves only when committees change, and failures outside those windows can create long periods of degraded availability. Walrus avoids this trap by allowing recovery to happen independently of migration. If a node becomes unreliable or fails to respond, other nodes can gradually compensate by reconstructing missing slivers through the protocol’s encoding guarantees. This keeps the system functional without forcing immediate, disruptive shard reassignment. The text also highlights an alternative shard assignment model based on a node’s stake and self-declared storage capacity. While this model could offer stronger alignment between capacity and responsibility, it introduces significant operational complexity. Walrus would need to actively monitor whether nodes reduce their available capacity after committing storage to users and then slash them if they fail to honor those commitments. In theory, slashed funds could be redistributed to nodes that absorb the extra load, but implementing this cleanly at scale is difficult and introduces new failure modes. One of the hardest challenges Walrus addresses is dealing with nodes that withdraw or degrade slowly rather than failing outright. A fully unresponsive node does not immediately lose its shards. Instead, it is gradually penalized over multiple epochs as it fails data challenges. This gradual approach avoids sudden shocks to the network but also means recovery is not instantaneous. During this period, Walrus must continue to serve data reliably despite reduced cooperation from that node. The protocol acknowledges that this gradual penalty model is not ideal in every scenario. If a node becomes permanently unresponsive, the slow loss of shards can temporarily constrain the system. This is why the design openly discusses future improvements, such as an emergency migration mechanism. Such a system would allow Walrus to confiscate all shards from a node that repeatedly fails a supermajority of data challenges across several epochs, accelerating recovery while preserving fairness and security. What stands out in Walrus’s approach is its transparency about tradeoffs. Rather than hiding complexity behind optimistic assumptions, the protocol explicitly designs for adversarial and imperfect behavior. Non-migration recovery ensures that data availability is not hostage to node cooperation or timing. Even when nodes misbehave, withdraw unpredictably, or fail silently, Walrus continues to converge toward a healthy state. Non-migration recovery reflects Walrus’s broader philosophy: decentralized storage must be resilient by default, not by exception. Recovery should be continuous, proportional, and protocol-driven, not dependent on emergency interventions or centralized control. By allowing the system to heal itself even outside planned migration events, Walrus moves closer to being a truly long-lived, autonomous storage network capable of surviving the realities of global decentralization. #walrus $WAL
Inside the Walrus Decentralized Testbed: Proving Storage at Global Scale
@Walrus 🦭/acc does not evaluate its ideas in isolation or under artificial laboratory conditions. Instead, its design is validated through a real, decentralized testbed that closely mirrors how the network is expected to behave in production. The excerpt highlights that the Walrus testbed consists of 105 independently operated storage nodes managing around 1,000 shards. This is important because decentralization is not just a property of code, but of deployment. Independent operators, different geographies, and uneven network conditions create the kind of friction that exposes weaknesses in protocol design. Walrus intentionally embraces this complexity to ensure its guarantees hold in the real world. Shard allocation in the Walrus testbed follows the same stake-based model planned for mainnet. Operators receive shards in proportion to their stake, ensuring that economic weight translates into storage responsibility. At the same time, strict limits prevent any single operator from controlling too many shards. With no operator holding more than 18 shards, the system avoids centralization risks and single points of failure. This distribution ensures that availability and recovery depend on cooperation across many independent participants rather than trusting a few large actors. The quorum requirements described in the testbed further demonstrate Walrus’s resilience. For basic availability guarantees, an f + 1 quorum requires collaboration from at least 19 nodes, while stronger guarantees require a 2f + 1 quorum involving 38 nodes. These thresholds are not theoretical numbers; they were exercised in a live, decentralized environment. This shows that Walrus is designed to operate safely even when a significant portion of the network is slow, offline, or unresponsive, without sacrificing correctness or progress. Geographic diversity plays a critical role in validating Walrus’s assumptions about asynchrony and failure. Nodes in the testbed span at least 17 countries, including regions with different network latencies, regulations, and infrastructure quality. Some operators even chose not to disclose their locations, adding another layer of unpredictability. This diversity ensures that Walrus is tested against real-world network delays, partitions, and performance variance, rather than idealized conditions. What makes these results especially meaningful is that all reported measurements are based on data voluntarily shared by node operators. This reflects the reality of decentralized systems, where there is no central authority forcing uniform reporting or behavior. Walrus is built to function under partial visibility and incomplete information, and the testbed reinforces that the protocol remains stable even when data about the network itself is imperfect. Overall, the #walrus testbed demonstrates that the protocol’s theoretical guarantees translate into practical robustness. By combining stake-based shard allocation, strict decentralization limits, strong quorum thresholds, and global node distribution, Walrus proves it can scale without relying on trust, central coordination, or fragile assumptions. The testbed is not just a benchmark; it is evidence that Walrus is designed for the messy, unpredictable reality of decentralized storage at scale. $WAL
#dusk $DUSK Il sistema di prova a conoscenza zero di Dusk è la base del suo design orientato alla privacy. Consente ai partecipanti di dimostrare che un'azione è valida utilizzando parametri pubblici, mantenendo completamente private le informazioni sensibili.
Una prova è generata da valori pubblici e input privati, quindi verificata dalla rete senza rivelare le informazioni sottostanti. Questo consente transazioni riservate, contratti smart privati e operazioni di validatori nascosti, mantenendo al contempo la massima correttezza. Invece di fidarsi dei partecipanti, la rete si fida della matematica.
Facendo delle prove a conoscenza zero una funzionalità nativa del protocollo, Dusk garantisce che privacy, sicurezza e verificabilità coesistano a ogni livello della blockchain. @Dusk
#dusk $DUSK The Bid Contract is how generators securely enter Dusk’s consensus process. Instead of openly staking, participants lock their bids through a smart contract, defining when the bid becomes active and when it expires.
This contract allows generators to submit new bids, extend existing ones, or withdraw them once the eligibility period ends. By managing bids on-chain with clear rules and expiration, Dusk prevents permanent influence and long-term manipulation.
The Bid Contract ensures participation is time-bound, verifiable, and fair, forming a critical foundation for Dusk’s private leader selection and secure consensus mechanism. @Dusk
#dusk $DUSK La fase di accordo è l'ultimo passo in cui Dusk blocca un blocco in modo permanente. Eseguendo in modo asincrono accanto al ciclo principale di consenso, questa fase conferma che un singolo blocco candidato ha raccolto abbastanza voti per essere finalizzato. Una volta raggiunta la soglia di voto richiesta, il blocco diventa irreversibile e parte della catena canonica. Nessuna riorganizzazione o rollback è possibile dopo questo punto.
Separando l'accordo dalle fasi precedenti, Dusk garantisce una finalità rapida senza compromettere la sicurezza o la privacy. La fase di accordo offre la certezza necessaria per transazioni finanziarie reali e regolamenti on-chain. @Dusk
#dusk $DUSK La fase di riduzione è dove Dusk passa da molte possibili proposte di blocco a un singolo candidato chiaro. Dopo la fase di generazione, possono esistere più blocchi, ma la rete deve concordare su uno prima della finalizzazione.
La riduzione comprime questi molteplici input in un singolo risultato attraverso un processo strutturato in due fasi. Questo prepara la rete per un accordo binario senza esporre le identità o le preferenze dei validatori.
Separando la riduzione dall'accordo finale, Dusk aumenta l'efficienza e la resilienza mantenendo al contempo il consenso privato. La fase di riduzione garantisce chiarezza, coordinamento e sicurezza, fungendo da ponte tra la creazione di blocchi privati e l'accordo finale su scala di rete. @Dusk
#dusk $DUSK Generation phase is where Dusk’s private consensus becomes an actual block on the network. After a generator qualifies through Proof-of-Blind-Bid, it can privately forge a candidate block without revealing its identity or stake.
This block includes cryptographic and zero-knowledge proofs that confirm the generator was eligible to produce it. The candidate block is then propagated for the next consensus steps. By separating leader qualification from block creation, Dusk ensures fair block production, protects validators from targeting, and maintains strong security.
The Generation phase turns private selection into secure, verifiable progress on-chain. @Dusk
Selezione Privata dei Leader in Dusk: Offerte Cieche, Valutazione Crittografica e Consenso Equo
Questa parte del protocollo Dusk descrive come vengono selezionati i leader in un modo che rompe completamente con i modelli di staking tradizionali e visibili. Invece di annunciare pubblicamente i validatori, le dimensioni degli stake o le elezioni dei leader, Dusk trasforma la selezione dei leader in un processo privato e crittografico che avviene localmente e silenziosamente. Il risultato è un sistema in cui la leadership esiste senza esposizione e l'equità è imposta dalla matematica piuttosto che dalla visibilità. Ogni partecipante al consenso inizia presentando un'offerta cieca. Questa offerta impegna un importo di stake utilizzando impegni crittografici ed è legata a una chiara finestra di idoneità. La rete sa che esiste un'offerta, ma non sa chi l'ha presentata, quanto è grande o quando diventerà attiva. Solo il partecipante detiene il segreto che può successivamente aprire questo impegno. Questo garantisce che la partecipazione sia verificabile senza essere osservabile.
Come Dusk Quantifica Sicurezza, Vitalità e Selezione del Leader
Questa sezione del documento Dusk va più in profondità rispetto al marketing o alle spiegazioni superficiali. Mostra come Dusk misura formalmente la sicurezza e l'affidabilità utilizzando la probabilità, non assunzioni o garanzie vaghe. Le formule descrivono quanto sia probabile che la rete fallisca, quanto sia probabile che rimanga attiva e come vengono selezionati i leader senza esporre l'identità o la dimensione della partecipazione. Questo è il tipo di rigore richiesto per l'infrastruttura finanziaria. Al centro c'è l'idea che la sicurezza del consenso sia probabilistica. Invece di assumere che gli attaccanti non abbiano mai successo, Dusk calcola la probabilità che un avversario possa creare un fork in qualsiasi fase. Il tasso di fallimento per fase è derivato dalla distribuzione della partecipazione onesta rispetto a quella bizantina all'interno di comitati selezionati casualmente. Se un attaccante non riesce a ottenere una supermaggioranza anche in una sola fase di consenso, l'attacco fallisce. Collegando queste probabilità attraverso le fasi di Generazione, Riduzione e Accordo, Dusk mostra che la possibilità di un fork di successo diventa trascurabilmente piccola.