The Walrus Story: When Data Becomes the Real Asset
I’m going to start from the place most people ignore, because the future of blockchains is not only about moving value, it is about moving and protecting data, and once you notice that shift you can never unsee it, because every real application is a data engine that quietly produces images, videos, game assets, documents, logs, AI datasets, and the private traces of human life that make an app feel personal. In the Web2 world, that data usually lives inside centralized clouds that are convenient until they are not, because a single provider can throttle access, remove content, change pricing, or simply decide your product is too risky to host, and when that happens the application does not just degrade, it loses trust, and trust is the only currency that survives every market cycle. Walrus is built around a very grounded idea that decentralized storage and data availability should feel like infrastructure rather than a feature, meaning it should keep working when conditions are imperfect, it should be predictable enough for builders to budget around, and it should be resilient enough that the app is not hostage to a single gatekeeper. Why Decentralized Storage Has Always Been Hard They’re not the first team to notice the storage problem, but they are among the few who treat it with the seriousness it deserves, because storage is where theory gets punished by reality. Storing data is easy when you have one server and one database, but it becomes difficult when you need global availability, low latency retrieval, fault tolerance, and costs that do not explode as you scale, and it becomes even harder when you want the system to survive malicious actors, sudden outages, and the natural churn of machines joining and leaving. The uncomfortable truth is that many “decentralized storage” conversations feel inspiring until you ask the simplest question, which is what happens when a meaningful percentage of nodes go offline during peak usage, what happens when the network is stressed, and what happens when users demand both reliability and privacy at the same time, because real users will demand all of it without caring how hard it is. Walrus is designed specifically as a blob storage and data availability network, which is an important distinction, because the architecture is optimized for large binary objects and real delivery rather than pretending every file behaves like a small on chain state update. How Walrus Works Without Pretending the World Is Perfect At the heart of Walrus is a design choice that sounds technical but feels deeply human when you understand the motivation, which is the choice to use erasure coding so the network can recover data even when parts of it fail, rather than relying on full replication that can be wasteful or fragile in different ways. The Walrus documentation describes maintaining storage overhead at roughly five times the blob size through erasure coding, while storing encoded parts across storage nodes so the system is robust against failures in a way that is more cost effective than traditional full replication methods. If you zoom out, what this means is that the system is designed to handle chaos gracefully, because in a decentralized world chaos is not an exception, it is the baseline, and if the network cannot heal from slippage, downtime, and partial failures, then it is not infrastructure, it is a demo. The deeper research work behind Walrus also frames it as an erasure coded architecture that scales to hundreds of storage nodes with high resilience at low overhead, using an encoding approach described as self healing, which is a meaningful phrase because the best infrastructure is the kind you do not have to babysit. The Control Plane and the Storage Plane Working Like a Real System One of the most practical design choices in Walrus is that it does not try to turn the base chain into a file server, because that would be expensive and slow, and instead it works in tandem with a base chain as a secure control plane while Walrus does the heavy work of storage and retrieval. The Walrus team describes the lifecycle of a blob as integrated with Sui, where Walrus specializes in efficient storage and retrieval, while Sui manages metadata and proof of availability and enables programmability of stored data. This separation matters because it creates clarity, where rules and ownership are managed in a verifiable coordination layer, while availability and throughput live in the storage layer, and when you build systems this way you reduce the temptation to overload one layer with responsibilities it cannot handle, which is often how systems break under stress. If it becomes normal for developers to treat stored data as something they can coordinate, verify, and permission through programmable rules while still retrieving it at scale, then the idea of decentralized apps stops being limited to small on chain state and starts extending to real media, real datasets, and real production workflows. The Metrics That Actually Matter When You Stop Chasing Noise We’re seeing a new kind of maturity in crypto where the most serious builders judge networks by boring metrics, because boring metrics are where truth lives. For Walrus, the real questions are about availability during churn, retrieval success under load, storage overhead relative to durability, cost predictability for teams that budget in real world terms, and the developer experience of storing and serving data without building a fragile custom pipeline. The moment you focus on those metrics, the story becomes less about hype and more about whether the network can behave like a dependable utility, because the winners in infrastructure are not the loudest, they are the most reliable. Quilt and the Small Files Reality That Breaks Many Systems If you have ever built anything real, you know that large files are only half the story, because production systems often store huge numbers of small files, and the overhead of handling them can quietly kill a storage model even if it looks strong on paper. Walrus introduced Quilt as a batching solution for small files, and a Binance Square update about Quilt describes how it groups multiple small files, dramatically reducing costs for very small blobs, and it also notes that the mainnet had handled over 800 plus TB of data while supporting hundreds of projects within a few months of being live, which is the kind of usage signal that suggests real behavior rather than theoretical potential. When you see a network solving small file economics instead of only talking about big vision, you are usually looking at a team that has felt the friction of real adoption, because users do not care about your architecture diagram, they care about whether their workload is affordable, fast, and stable. The Economic Engine and Why Cost Stability Is Not a Luxury A storage network lives or dies by its economics, and not in the speculative sense, but in the utility sense, because operators need a reason to provide capacity, and users need a cost model that does not punish them for simply using the product. The Walrus token page describes the payment mechanism as designed to keep storage costs stable in fiat terms and protect against long term token price fluctuations, with users paying upfront for data stored for a fixed amount of time, and that payment being distributed across time to storage nodes and stakers as compensation for service. This is a subtle but important design philosophy, because it treats storage like a service people must plan around, and it respects the reality that teams building apps are not trying to gamble on volatility while they store customer data. When fees become the true revenue engine and early incentives help bootstrap supply and reliability, the system has a chance to grow into something sustainable rather than something that only looks good during a short window of excitement. Privacy and the Moment Decentralized Storage Grows Up One of the hardest truths about data is that not all data should be public, and in many real world finance and enterprise workflows, the most valuable data is the data you cannot expose. Walrus introduced Seal as an encryption and access control layer that aims to make programmable data access possible at scale, and the Walrus blog describes Seal as bringing encryption and access control to Walrus Mainnet so builders can integrate programmable data access into apps. The Sui blog description of Seal emphasizes a model where data is encrypted until policy says otherwise and policies are code you control, which points toward a future where access control is not scattered across gateways and centralized services, but instead tied closely to the data boundary itself. If this model becomes the default, it becomes easier to imagine applications that handle sensitive financial workflows, private AI datasets, regulated compliance constraints, and user controlled permissions without forcing builders to re invent security from scratch every time. Realistic Risks and the Failures You Should Think About Honestly A mature view of Walrus includes the risks, because infrastructure does not earn trust by pretending risk does not exist, it earns trust by acknowledging where stress can appear and showing how the system responds. One risk is operational concentration, where capacity could cluster among a smaller set of operators if incentives or hardware requirements push the network that way, and that can create softer forms of centralization even inside decentralized systems. Another risk is economic mismatch, where storage demand might grow slower than expected while capacity grows faster, leading to periods where incentives carry too much weight, and the network must prove it can transition from subsidy supported bootstrapping to fee supported sustainability. There is also the risk of developer friction, because even the best storage network will struggle if integration feels complex or retrieval patterns do not match how developers build products in practice, which is why solutions like Quilt matter as signals that the team is listening to real pain. Finally, privacy systems bring their own complexity, because encryption and access policies must be both secure and usable, and any gap between the policy model and real workflows can become a source of error, so the long term success of Seal style access control depends on tooling, audits, and the ability to make correct security decisions feel natural rather than fragile. What the Long Term Future Could Look Like If the Vision Holds The honest long term vision for Walrus is not that it replaces every cloud provider overnight, because clouds will remain powerful, familiar, and deeply integrated, but that it becomes the default decentralized option for applications that cannot afford gatekeepers, that need censorship resistance, that need verifiable availability, or that need a credible path to programmable privacy. The future that feels most realistic is a hybrid world where many apps still use traditional infrastructure for some workloads, but they offload the most sensitive or most censorship exposed data paths to decentralized networks, and as that pattern becomes normal, the boundary between “on chain” and “off chain” starts to dissolve, because users only care that their application works and that their data is treated with respect. I’m not persuaded by projects that only promise a revolution, but I am persuaded by systems that solve one hard piece of reality at a time, and Walrus is aiming directly at a problem that every serious application eventually faces, which is how to store and serve data without placing your future inside a single set of hands, and if they keep turning theory into reliability, then it becomes the kind of quiet infrastructure that reshapes what people build without needing to shout about it, and that is how lasting technology usually wins. @Walrus 🦭/acc #Walrus $WAL
Visione di Walrus Storage: Dove i Dati Web3 Finalmente Sembrano Reali
La maggior parte delle persone parla di crypto come se fosse solo denaro in movimento, ma la verità è che la prossima ondata di vere applicazioni vivrà o morirà in base ai dati, perché ogni app produce immagini, video, file di gioco, documenti, backup, set di dati AI e i file silenziosi che fanno sentire un prodotto fluido e affidabile. Nel mondo Web2, quasi tutto questo si trova all'interno di poche aziende cloud, il che sembra facile fino al giorno in cui l'accesso viene bloccato, il contenuto viene rimosso, i prezzi cambiano senza preavviso o un servizio rallenta proprio quando i tuoi utenti ne hanno più bisogno. Walrus è costruito per quel preciso punto dolente, non per creare una nuova storia, ma per rimuovere il singolo punto di controllo trasformando lo storage in una rete decentralizzata che mantiene i dati disponibili anche quando il mondo non è perfetto.
In most apps, the real product is not a token, it is the data people create every day, the images they upload, the videos they stream, the game assets they download, the AI datasets a team trains on, the documents a business must keep, the backups that save a company from disaster, and even the website code that makes an experience feel alive. In Web2, almost all of that lives on a handful of cloud providers, which feels easy until the day it is not, because one provider can block access, remove content, change pricing, throttle performance, or shut a service down, and then the builder and the user both learn what a single point of control really means. Walrus is built around a simple promise that storage should behave like infrastructure, meaning it should stay available, stay predictable, and stay outside the grip of one gatekeeper. The Problem Behind Every Product If you have ever tried to scale an app, you already know the uncomfortable truth that storage is not a side feature, it is the backbone. The moment a product grows, data grows faster, and the more valuable the data becomes, the more fragile centralized storage starts to feel. Reliability becomes a daily requirement, not a marketing line, because users do not care why a file is missing, they only remember that it was missing when they needed it. Walrus targets this exact reality by taking the thing that usually sits behind one company’s servers and turning it into a network that can keep serving data even when parts of the system fail. How Walrus Thinks About Storage Walrus is designed for large data and real availability, which is why it leans into blob storage and erasure coding instead of naïve replication. The idea is straightforward: a file can be encoded into pieces and distributed across many storage nodes so that the network can still recover the data even if some nodes go offline, disconnect, or fail, and the cost overhead stays far lower than copying full files to many places. Walrus documentation describes this approach as a way to stay robust against failures while remaining cost efficient, rather than relying on full replication as the default strategy. That design matters because real networks are messy. Nodes drop. Hardware breaks. Regions go quiet. If storage cannot survive normal chaos, it is not useful storage. Walrus aims to make availability the default behavior, not the lucky outcome. Coordination Layer and Storage Layer Working Together One of the reasons this architecture can feel practical is that Walrus is built to work closely with a base chain that handles coordination. In that model, the coordination layer can track ownership, rules, and proofs, while the storage network focuses on what it must do best, which is keeping data available and retrievable at scale. Walrus is developed in the broader Sui ecosystem, and public descriptions of the project consistently frame it as a programmable, decentralized storage network built alongside Sui’s design goals. Economic Engine That Matches Real Usage Storage needs predictable budgeting, especially for teams that are not speculating, they are shipping products. Walrus token utility is framed around paying for storage, staking for security, and governance participation, but what matters for builders is that the system aims to keep storage costs stable in real terms so users are not crushed by volatility when they simply want to store data. The network also uses incentives so operators are paid for providing capacity and uptime, with fee revenue becoming more meaningful as usage grows, and early subsidies helping bootstrap network strength while adoption matures. Tokenomics With Real Numbers Walrus has a maximum supply of 5,000,000,000 tokens, and public material also states an initial circulating supply of 1,250,000,000 tokens. The distribution is described as 43 percent allocated to a community reserve, 10 percent to a user drop, 10 percent to subsidies, 30 percent to core contributors, and 7 percent to investors. The release structure is described in a way that prioritizes long time horizons. The community reserve includes 690 million tokens available at launch with the remainder unlocking linearly until March 2033, while subsidies unlock linearly over 50 months, and the user drop is described as split between a pre mainnet portion and a post mainnet portion and marked as fully unlocked. Ecosystem and Usage That Looks Like Reality A storage network can sound impressive on paper and still fail in practice if it cannot handle how real apps behave, and one of the hardest realities is that apps often store huge numbers of small files. Walrus introduced Quilt as a batching approach that groups many small files so costs and overhead become more reasonable while still allowing apps to access individual items, which is exactly the kind of unglamorous engineering that usually separates a demo from infrastructure. Usage signals matter because they show stress testing through real behavior. A widely circulated update around Quilt’s rollout states that the mainnet had handled more than 800 plus TB of data and supported hundreds of projects within a few months of launch. Privacy as a Requirement, Not a Luxury Not all data should be public by default, and many of the most valuable use cases for storage are also the most sensitive. That is where encryption and policy based access control become essential for enterprise workflows, private AI, and user data that cannot be exposed. Walrus discussions around Seal frame it as an end to end encryption approach with on chain access control concepts, aimed at making private storage compatible with verifiable systems instead of forcing builders to choose between privacy and programmability. A Calm Way to Think About the Future Walrus is easiest to understand when you treat it like infrastructure instead of a trend. The long term value is not in louder narratives, it is in whether builders can store large data reliably, whether costs stay predictable, whether privacy can be real, and whether the network keeps working when conditions are imperfect. If Walrus continues to turn these goals into boring reliability, it can become the kind of foundation that serious applications depend on quietly, every single day. @WalrusProtocol
I’m watching Walrus with a calm kind of conviction because they’re putting real engineering behind decentralized storage, and if that reliability keeps improving, it becomes the invisible layer that serious apps can trust for data that must stay available, private, and hard to censor. We’re seeing a shift toward utility over noise, and Walrus fits that future with quiet strength. They’re not trying to impress you for a day, they’re building something meant to last
I’m keeping Walrus on my radar because they’re building decentralized storage that feels designed for real demand, and if the network keeps proving it can store large data reliably with privacy and censorship resistance, it becomes the kind of infrastructure that apps lean on quietly every day. We’re seeing more builders care about foundations instead of headlines, and Walrus fits that shift with a smart, sure direction.
This is the kind of project that can earn trust one release at a time.
I’m paying close attention to projects that solve real problems, and Walrus stands out because they’re building decentralized storage that can handle large data with privacy and resilience instead of depending on one company or one server. If this model keeps proving itself at scale, it becomes a quiet foundation for apps that need reliability, censorship resistance, and predictable costs, and we’re seeing the conversation shift from promises to practical adoption and builder momentum.
Walrus feels like the kind of infrastructure that earns trust by shipping, not by shouting.
The Walrus Network Architecture: A New Standard for Regulated Blockchains I’m looking at Walrus with a different lens because most blockchains are built for open ecosystems, but real world finance needs an architecture where privacy, compliance, and performance can live together without compromise, and they’re clearly aiming for that kind of foundation. If the system can move value and data without exposing sensitive details on chain, it becomes far easier for serious institutions to build with confidence, and we’re seeing that direction through confidential style flows, fast finality, and institution ready settlement at the base layer.
This is the kind of architecture that earns trust by design.
I’m watching Walrus closely because they’re building something that feels practical, a decentralized storage layer designed to handle large data with privacy and resilience, and if that reliability keeps improving, it becomes the kind of infrastructure real applications can depend on quietly in the background. We’re seeing real utility + community momentum come together, and that’s why it’s getting interesting right now. I am tracking update, partnership, and adoption, and I’m staying focused on what gets delivered next.
Motivo $BREV è sceso a 0.2994 e gli acquirenti sono intervenuti rapidamente, spingendo una forte candela di rimbalzo di nuovo nella zona 0.306. Anche con il rimbalzo, il prezzo sta ancora scambiando sotto l'area di resistenza più pesante dove EMA99 si trova intorno a 0.3099, quindi la domanda sta migliorando ma la tendenza ha bisogno di conferma.
Livelli Chiave Supporto 0.3043 poi 0.3018 poi 0.2994 Resistenza 0.3099 poi 0.3118 e 0.3204
Tendenza Neutro a leggermente ribassista a breve termine, con slancio che si sposta verso l'alto dopo il calo.
Idea di Trading (Se / Allora) Se $BREV rimane sopra 0.3043 e rompe 0.3099 con una chiusura pulita, allora un movimento verso 0.3118 diventa realistico e 0.3204 è il target più ambizioso. Se non riesce a mantenere 0.3043 e scivola di nuovo sotto 0.3018, allora 0.2994 è il livello che deve tenere o il rimbalzo svanisce. #MarketRebound #USJobsData #CPIWatch #WriteToEarnUpgrade #BinanceHODLerTURTLE
Motivo Il grafico mostra una pressione di vendita costante con massimi più bassi, e il prezzo sta scambiando sotto tutte le principali EMA. EMA7 intorno a 0.2188 è sopra il prezzo, EMA25 intorno a 0.2228 è più alta, e EMA99 intorno a 0.2272 è il cap più grande, quindi ogni rimbalzo incontra rapidamente l'offerta. Il supporto a 0.2106 sembra un rapido prelievo di liquidità, ma ha bisogno di acquisti continuativi per essere considerato un'inversione.
Livelli Chiave Supporto 0.2152 poi 0.2106 Resistenza 0.2188 poi 0.2228 e 0.2272
Tendenza Ribassista a breve termine, tentativo di stabilizzarsi vicino al supporto.
Idea di Trading (Se / Allora) Se il prezzo si mantiene sopra 0.2152 e recupera 0.2188 con una chiusura pulita, allora un rimbalzo verso 0.2228 diventa realistico. Se perde di nuovo 0.2152, allora 0.2106 è il prossimo livello chiave e la tendenza al ribasso può estendersi. #StrategyBTCPurchase #WriteToEarnUpgrade #USJobsData #CPIWatch #BTCVSGOLD
Motivo ZKP ha trascorso tempo a costruire una base stabile, poi la domanda è intervenuta con forza e ha inviato il prezzo in verticale. Le EMA sono completamente sovrapposte in modo rialzista con EMA7 intorno a 0.1384 sopra EMA25 intorno a 0.1331 e EMA99 intorno a 0.1292, quindi la forza del trend è chiara. Dopo un movimento così netto, la prossima chiave è se gli acquirenti difendono il primo calo o se si trasforma in una rapida presa di profitto.
Livelli Chiave Supporto 0.1411 poi 0.1384 poi 0.1331 Resistenza 0.1517 poi 0.1531
Trend Rialzista a breve termine, forte breakout di momentum.
Idea di Trading (Se / Allora) Se $ZKP rimane sopra 0.1411 e supera 0.1517 con una chiusura pulita, allora la continuazione verso 0.1531 diventa probabile. Se rifiuta da 0.1517 e perde 0.1411, allora un reset più profondo in 0.1384 a 0.1331 è la zona di ritracciamento più sana da osservare. #MarketRebound #BTC100kNext? #USDemocraticPartyBlueVault #BTCVSGOLD #BinanceHODLerBREV
Motivo Questo è principalmente mantenimento del peg e bilanciamento della liquidità, non un'operazione di tendenza. Il prezzo continua a tornare nell'area di 1.00 e tutte le EMA sono sostanzialmente piatte intorno a 1.0000, che è esattamente ciò che vuoi vedere quando una stablecoin si comporta normalmente.
Livelli Chiave Supporto 0.9999 Resistenza 1.0002
Tendenza Neutro, vincolato all'intervallo intorno al peg.
Idea di Scambio (Se / Allora) Se $U mantiene il pavimento di 0.9999, allora di solito torna verso 1.0000 a 1.0002 man mano che gli spread si normalizzano. Se inizia a stampare sotto 0.9999 ripetutamente e non riesce a recuperare 1.0000, allora vale la pena osservare da vicino la liquidità e la profondità prima di prendere qualsiasi dimensione. #MarketRebound #USDemocraticPartyBlueVault #WriteToEarnUpgrade #BTCVSGOLD #USJobsData
Motivo FOGO è salito verso 0.036 e poi è stato rapidamente respinto, poi è sceso in modo costante. Il prezzo si trova al di sotto della pila EMA con EMA7 intorno a 0.03451, EMA25 intorno a 0.03485 e EMA99 intorno a 0.03589 sopra, il che mantiene pressione su ogni rimbalzo. Il volume c'è, ma il flusso sembra più simile a distribuzione che a domanda fresca in questo momento.
Livelli chiave Supporto 0.03412 poi 0.03293 Resistenza 0.03485 poi 0.03589 e 0.03647
Trend Ribassista a breve termine, cerca di stabilizzarsi vicino al supporto.
Idea di trading (Se / Allora) Se $FOGO mantiene 0.03412 e recupera 0.03485 con una chiusura pulita, allora un rimbalzo verso 0.03589 e 0.03647 diventa realistico. Se perde di nuovo 0.03412, allora 0.03293 è la prossima zona di supporto e la continuazione al ribasso rimane sul tavolo. #MarketRebound #USDemocraticPartyBlueVault #USJobsData #WriteToEarnUpgrade #BinanceHODLerBREV
Sto guardando Dusk Foundation con un tipo di rispetto calmo perché stanno costruendo il livello che la finanza regolamentata è mancata, un luogo dove la privacy è trattata come protezione, l'auditabilità è trattata come responsabilità e il settlement è trattato come qualcosa che deve essere finale e affidabile. Il loro design modulare sembra fatto per istituzioni che vogliono asset del mondo reale tokenizzati e DeFi compliant senza trasformare ogni transazione in esposizione pubblica. Stiamo vedendo crescere il slancio della comunità attorno a infrastrutture che possono gestire regole reali, non solo esperimenti aperti, e Dusk sta iniziando a distinguersi in quella categoria. Se le partnership si approfondiscono e l'adozione continua a dimostrarsi in utilizzo reale, diventa una base seria per la prossima era della finanza on chain, e onestamente sta diventando interessante.
Sto guardando Dusk Foundation perché stanno costruendo un Layer 1 che si adatta al mondo reale della finanza regolamentata, dove la privacy è importante ma l'audibilità deve comunque esistere. Invece di spingere tutto alla vista pubblica, Dusk è progettato per app di livello istituzionale, DeFi conforme e beni del mondo reale tokenizzati con un approccio modulare che mantiene il layer di base pratico. Stiamo osservando un forte slancio della comunità attorno a catene che possono supportare un serio regolamento senza sacrificare la riservatezza. Se le partnership e l'adozione continuano a progredire, diventa un pezzo silenzioso ma importante del futuro stack finanziario, e in questo momento sta diventando interessante. Sto seguendo da vicino aggiornamenti, partnership e utilizzo reale.
Dusk Foundation e il Layer Mancante di Fiducia nella Finanza Moderna
Quando le persone incontrano per la prima volta la blockchain, spesso la incontrano attraverso la promessa di apertura, perché le prime reti sono state costruite come registri pubblici in cui chiunque poteva verificare la storia del valore senza chiedere permesso, e quella apertura era abbastanza potente da creare un intero nuovo mercato, eppure più ci si avvicina alla finanza reale, più ci si rende conto che il mondo non funziona solo sull'apertura, funziona su una divulgazione controllata con attenzione, su una privacy che protegge individui e istituzioni, su tracce di audit che reggono in aula e nelle sale dei consigli, e su performance che non collassano nel momento in cui arriva un volume serio, e questa è esattamente la tensione su cui la Dusk Foundation si è concentrata sin dalla sua fondazione nel 2018, perché stanno costruendo un Layer 1 per un'infrastruttura finanziaria regolamentata e incentrata sulla privacy dove la privacy e la conformità non sono nemici, sono entrambi requisiti, e la rete è progettata per farli coesistere senza trasformare il sistema in qualcosa di lento, fragile o inutilizzabile.
Motivo $GUA ha raggiunto un massimo vicino a 0.142 e poi è sceso in una pulita tendenza di vendita, stampando minimi più bassi fino a 0.1285. Il rimbalzo è reale, ma il prezzo è ora sotto le medie più lente, con EMA25 intorno a 0.13216 ed EMA99 intorno a 0.13374 ancora sopra, il che significa che i venditori possono difendere quei livelli a meno che i compratori non intervengano con una domanda più forte.
Livelli Chiave Supporto 0.13086 poi 0.12850 Resistenza 0.13216 poi 0.13374 e 0.13695
Tendenza Bears a breve termine, che si sta trasformando in una fase di stabilizzazione dopo il calo.
Idea di Trading (Se / Allora) Se $GUA rimane sopra 0.13086 e rompe 0.13216 con una chiusura pulita, allora un aumento verso 0.13374 e 0.13695 diventa possibile. Se perde di nuovo 0.13086, allora 0.12850 è il prossimo supporto chiave e la tendenza al ribasso può riprendere. #StrategyBTCPurchase #CPIWatch #USJobsData #BinanceHODLerBREV #BinanceHODLerBREV
Motivo $GAIX ha avuto una candela di vendita pesante che ha rotto la struttura, poi i compratori sono intervenuti e hanno formato una lenta ripresa in un intervallo ristretto. In questo momento il prezzo si trova intorno alle EMAs rapide e sta cercando di mantenere la stabilità, ma la EMA99 vicino a 0.11411 è ancora sopra e agisce come un coperchio, quindi il momentum è neutro fino a quando quel livello non torna a supporto.
Livelli Chiave Supporto 0.11286 poi 0.11153 Resistenza 0.11361 poi 0.11411 e 0.11492
Tendenza Neutro a leggermente ribassista a breve termine, perché il prezzo è ancora al di sotto della EMA più lunga e il rimbalzo non si sta ancora espandendo.